edge-ai
Edge AI Video Processing
A tool for running AI models at the edge. Designed to minimize latency in processing
graph TD;
subgraph AI Processing
ProcessorManager["Processor Manager"]
V4L2["V4L2 AI Process"]
BroadcastStream["Stream AI Process"]
end
UnixPipe["Unix Pipes"]
Config["Config File"]
subgraph HTTPService["HTTP Interface"]
RestAPI["REST API"]
Websocket["Detections Websocket"]
end
Camera["USB Camera"]
Stream["Multicast Video Stream"]
ProcessorManager --> V4L2
ProcessorManager --> BroadcastStream
BroadcastStream --> UnixPipe
V4L2 --> UnixPipe
UnixPipe --> Websocket
RestAPI --> Config
Config --> ProcessorManager
Camera --> V4L2
Stream --> BroadcastStream
Documentation
To test this out quickly, you can do the following:
git clone https://github.com/spider-gazelle/edge-ai
cd edge-ai
shards build
cp -R ./www ./bin/www
mkdir ./bin/config
then lookup the video hardware you have available
./bin/hw_info -v
this will output something like:
Video Hardware
==============
* /dev/video4
USB2.0 HD UVC WebCam: USB2.0 IR (uvcvideo)
- GREY
640x360 (15.0fps) [DISCRETE]
* /dev/video2
USB2.0 HD UVC WebCam: USB2.0 HD (uvcvideo)
- MJPG
1280x720 (30.0fps) [DISCRETE]
640x480 (30.0fps) [DISCRETE]
352x288 (30.0fps) [DISCRETE]
320x240 (30.0fps) [DISCRETE]
176x144 (30.0fps) [DISCRETE]
160x120 (30.0fps) [DISCRETE]
- YUYV
1280x720 (10.0fps) [DISCRETE]
640x480 (30.0fps) [DISCRETE]
352x288 (30.0fps) [DISCRETE]
320x240 (30.0fps) [DISCRETE]
176x144 (30.0fps) [DISCRETE]
160x120 (30.0fps) [DISCRETE]
From this list you probably want to use the
- /dev/video2
- YUYV @ 640x480 (30.0fps)
Then create a config file (this can also be done via the API) vim ./bin/config/config.yml
---
pipelines:
3e8bca09-6b54-41aa-96eb-691a964adc50:
name: web camera
async: false
min_score: 0.4
track_objects: true
input:
type: video_device
# update these as required
path: /dev/video2
width: 640
height: 480
format: YUYV
# this multicast stream is used for confidence monitoring
multicast_ip: 224.0.0.1
multicast_port: 5000
output:
- type: "face_detection"
# this is a back of phone NN model
# so expects faces to be a little further away from the camera
model_uri: "https://raw.githubusercontent.com/patlevin/face-detection-tflite/main/fdlite/data/face_detection_back.tflite"
scaling_mode: "cover"
strides: [16, 32, 32, 32]
gpu_delegate: false
# tpu_delegate: /sys/bus/usb/devices/4-3
warnings: []
pipeline: [
{
"type": "gender_estimation",
"model_uri": "https://os.place.tech/neural_nets/gender/model_lite_gender_q.tflite",
"scaling_mode": "cover"
}
]
id: 3e8bca09-6b54-41aa-96eb-691a964adc50
updated: 2023-12-06 12:40:19.945720369+11:00
then you can launch the processes: cd bin
./processor
- this process performs the detections./interface
- this process is the API and monitoring
For confidence monitoring the configuration above browse to: http://127.0.0.1:3000/monitor.html?id=3e8bca09-6b54-41aa-96eb-691a964adc50
then you'll see output like:
Compiling
shards build
Once compiled you are left with the following binaries:
./bin/hw_info
helper for inspecting the hardware available./bin/processor
manages and runs the AI pipeline processes./bin/interface
the REST API / websocket interface
Distributing
You can build an image using docker build .
Multi-arch images
docker buildx build --progress=plain --platform linux/arm64,linux/amd64 -t stakach/edge-ai:latest --push .
Deploying
NOTE:: there is a ./install.sh
script that configures the following for you:
Multicast is used so we can process the video in different ways without having to encode it multiple times
# enable multicast on loopback device
ifconfig lo up
sudo route add -net 224.0.0.0 netmask 240.0.0.0 dev lo
- to consume multicast video in docker you need use the host network (or the multicast source must come from another container)
- docker on windows or mac will NOT WORK as they are virtualising linux and running in a bridged network
- WSL on windows will also not work as you can't run kernel modules such as V4L2 loopback devices
For loopback support
sudo apt-get install v4l2loopback-dkms
# create two loopback devices
sudo modprobe v4l2loopback devices=2
# to configure this to persist after a reboot
echo v4l2loopback | sudo tee -a /etc/modules-load.d/v4l2loopback.conf
echo "options v4l2loopback devices=2" | sudo tee -a /etc/modprobe.d/v4l2loopback.conf
For replay support, you'll need to have setup the ramdisk unless you want to run as root
sudo mkdir -p /mnt/ramdisk
sudo mount -t tmpfs -o size=512M tmpfs /mnt/ramdisk
export REPLAY_MOUNT_PATH=/mnt/ramdisk
# to configure this to persist after a reboot
echo "tmpfs /mnt/ramdisk tmpfs size=512M 0 0" | sudo tee -a /etc/fstab
# can test this config with (unmount if ramdisk already mounted)
sudo umount /mnt/ramdisk
sudo mount -a
Launch the service using: docker-compose up -d
Testing deployment
The following helpers are available to inspect hardware and test permissions:
- list detected hardware:
docker exec -it processor ./hw_info -v -t -g
- check TPU in container:
docker exec -it processor ./hw_info --test-tpu=0
- check GPU in container:
docker exec -it processor ./hw_info --test-gpu
Raspberry Pi
After running the install script you can inspect your hardware using the following commands, typically you'd use the API to configure things however this can be useful during development:
- List video hardware:
v4l2-ctl --list-devices
- Dummy video device are your loopback devices
- unicam (platform:3f801000.csi) is your Camera Serial Interface
- List USB hardware:
lsusb
- Global Unichip Corp or Google is your Coral.ai TPU
- List GPIO lines available:
gpioinfo
on newer versions of Pi OS's v4l2 no longer works for the ribbon connected camera modules. For these you'll need to stream the video for capture.
- on the pi:
sudo apt install libcamera-apps
- list devices
libcamera-vid --list-cameras
- stream video
libcamera-vid -t 0 --autofocus-mode auto --hdr sensor --profile main --level 4.2 --inline -o - | ffmpeg -i - -c:v copy -tune zerolatency -fflags nobuffer -fflags discardcorrupt -flags low_delay -f mpegts -loglevel warning udp://239.255.255.250:1234?pkt_size=1280
Then you can use the multicast stream as the input. This should be configured as a service for the docker images to pick it up on boot: sudo vi /etc/systemd/system/camera-stream.service
[Unit]
Description=Camera Stream Service
Wants=network.target
After=syslog.target network-online.target
[Service]
Type=simple
User=<username here>
ExecStart=/bin/sh -c 'libcamera-vid -t 0 --autofocus-mode auto --hdr sensor --profile main --level 4.2 --inline -o - | ffmpeg -i - -c:v copy -tune zerolatency -fflags nobuffer -fflags discardcorrupt -flags low_delay -f mpegts -loglevel warning udp://239.255.255.250:1234?pkt_size=1280'
Restart=always
RestartSec=5
KillMode=mixed
Nice=-10
[Install]
WantedBy=multi-user.target
Debugging the image
As we are building minimal docker images it is challenging to inspect the contents of the container. The simplest way to achieve this by mounting busy box binaries into the image
- First you'll need to download compatible binaries
wget https://busybox.net/downloads/binaries/1.31.0-defconfig-multiarch-musl/busybox-armv8l
chmod +x ./busybox-armv8l
mkdir busybox
mv ./busybox-armv8l ./busybox/
- then you can map this into the container and open a shell
docker run --rm -it \
-v /home/steve/busybox:/busybox \
--device /dev/gpiochip0 \
--cap-add SYS_RAWIO \
--entrypoint /busybox/busybox-armv8l \
stakach/edge-ai sh
OR editing docker-compose.yml
volumes:
- ./busybox/:/busybox/
- to run commands you'll need to preface them all with
/busybox/busybox-armv8l
etc
i.e. /busybox/busybox-armv8l ls -la /
edge-ai
- 0
- 0
- 10
- 0
- 6
- 3 months ago
- November 14, 2023
Thu, 07 Nov 2024 13:02:48 GMT