autobot v0.1.2
Ultra-efficient personal AI assistant powered by Crystal
Fast • Secure • Efficient
Why Autobot?
Inspired by nanobot and picoclaw — rebuilt in Crystal with a security and efficiency first approach.
| What | How |
|---|---|
| 🎯 Token Efficient | Structured tool results • Memory consolidation • Minimal context overhead • Session management |
| 📊 Observable | Status-based logging • Credential sanitization • Token tracking • Operation audit trails |
| 🔒 Secure | Docker/bubblewrap isolation • OS-level workspace restrictions • No manual path validation • SSRF protection • Command guards |
| ⚡ Lightweight | Tiny binary • <50MB Docker • Zero runtime deps • <100ms startup • Streaming I/O |
🛡️ Production-Grade Security
Autobot uses kernel-enforced sandboxing via Docker or bubblewrap — not application-level validation. When the LLM executes commands:
- ✅ Only workspace directory is accessible (enforced by Linux mount namespaces)
- ✅ Everything else is invisible to the LLM — your
/home,/etc, system files simply don't exist in the sandbox - ✅ No symlink exploits, TOCTOU, or path traversal — kernel guarantees workspace isolation
- ✅ Process isolation — LLM can't see or interact with host processes
- ✅ Auto-detected — Uses Docker (macOS/production) or bubblewrap (Linux/dev)
Example: When LLM tries ls ../, it fails at the OS level because parent directories aren't mounted. No regex patterns, no validation bypasses — just kernel namespaces.
✨ Features
Core Engine
- Multi-provider LLM (Anthropic, OpenAI, DeepSeek, Groq, Gemini, OpenRouter, vLLM)
- JSONL sessions with memory consolidation
- Built-in tools: file ops, shell exec, web search/fetch
Integrations
- Chat channels: Telegram, Slack, WhatsApp
- Cron scheduler with expressions and intervals
- Plugin system for custom tools
- Bash script auto-discovery as tools
Advanced
- Skills: Markdown-based with frontmatter
- Custom commands: macros or bash scripts
- Subagents for parallel tasks
- Full observability: tokens, files, operations
🚀 Quick Start
1. Install
# macOS (Homebrew)
brew tap crystal-autobot/tap
brew install autobot
# Linux/macOS - Download binary
curl -L "https://github.com/crystal-autobot/autobot/releases/latest/download/autobot-$(uname -s | tr '[:upper:]' '[:lower:]')-$(uname -m)" -o autobot
chmod +x autobot
sudo mv autobot /usr/local/bin/
# Or build from source
git clone https://github.com/crystal-autobot/autobot.git
cd autobot
make release
sudo install -m 0755 bin/autobot /usr/local/bin/autobot
# Or use Docker (multi-arch: amd64, arm64)
docker pull ghcr.io/crystal-autobot/autobot:latest
2. Create a new bot
autobot new optimus
cd optimus
This creates an optimus/ directory with everything you need:
optimus/
├── .env # API keys (add yours here)
├── .gitignore # Excludes secrets, sessions, logs
├── config.yml # Configuration (references .env vars)
├── sessions/ # Conversation history
├── logs/ # Application logs
└── workspace/ # Sandboxed LLM workspace
├── AGENTS.md # Agent instructions
├── SOUL.md # Personality definition
├── USER.md # User preferences
├── memory/ # Long-term memory
└── skills/ # Custom skills
3. Configure
Edit .env and add your API keys:
ANTHROPIC_API_KEY=sk-ant-...
The generated config.yml references these via ${ENV_VAR} — no secrets in config files.
4. Run
# Validate configuration
autobot doctor
# Interactive mode
autobot agent
# Single command
autobot agent -m "Summarize this project"
# Gateway (all channels)
autobot gateway
Autobot automatically detects and logs the sandbox method on startup — Docker on macOS/production, bubblewrap on Linux.
📚 Documentation
| Document | Description |
|---|---|
| Quick Start | Installation and first steps |
| Configuration | Complete config reference |
| Security | Security model and best practices |
| Deployment | Production deployment with proper user/permissions |
| Architecture | System design and components |
| Plugins | Building and using plugins |
| Development | Contributing and local setup |
💡 Examples
Telegram Bot with Custom Commands
channels:
telegram:
enabled: true
token: "BOT_TOKEN"
allow_from: ["your_username"]
custom_commands:
macros:
summarize: "Summarize our conversation in 3 bullet points"
translate: "Translate the following to English"
scripts:
deploy: "/home/user/scripts/deploy.sh"
status: "/home/user/scripts/system_status.sh"
Use /summarize or /deploy in Telegram to trigger them.
Cron Scheduler
# Daily morning greeting
autobot cron add --name "morning" \
--message "Good morning! Here's today's summary" \
--cron "0 9 * * *"
# Hourly reminder
autobot cron add --name "reminder" \
--message "Stand up and stretch!" \
--every 3600
# One-time meeting notification
autobot cron add --name "meeting" \
--message "Team sync in 5 minutes!" \
--at "2025-03-01T10:00:00"
Multi-Provider Setup
providers:
anthropic:
api_key: "${ANTHROPIC_API_KEY}"
openai:
api_key: "${OPENAI_API_KEY}"
deepseek:
api_key: "${DEEPSEEK_API_KEY}"
vllm:
api_base: "http://localhost:8000"
api_key: "token"
agents:
defaults:
model: "anthropic/claude-sonnet-4-5"
max_tokens: 8192
temperature: 0.7
🔧 Development
Prerequisites
- Crystal >= 1.10.0
Commands
make build # Debug binary
make release # Optimized binary (~2MB)
make test # Run test suite
make lint # Run ameba linter
make format # Format code
make docker # Build Docker image
make release-all # Cross-compile for all platforms
make help # Show all targets
autobot
- 0
- 0
- 0
- 0
- 2
- about 2 hours ago
- February 12, 2026
MIT License
Fri, 13 Feb 2026 22:14:18 GMT