neuratron
Neuratron
Neuratron is a machine learning framework inspired by the Keras API.
With Neuratron, you can build, fit and use a deep neural network.
Looking for contributors
A project of this scale cannot be done alone. I'm looking to anyone who loves Crystal and Machine learning to provide some implementations.
The more implementation we have, the more this framework and Crystal will be attractive to data scientists.
Installation
Neuratron is a fully crystal implementation. There is no special requirement here.
Usage
For this usage, we will take a full dense neural network that works for MNIST
You first need to create a model.
Currently, only the sequential model works.
model = Neuratron::Models::Sequential.new
Then, you must add some layers to your model
model.add(
Neuratron::Layers::Dense.new(16, input_shape: [784],
initializer: Neuratron::Initializers::Random.new(range: (-1.0..1.0)),
activation: Neuratron::Activations::Tanh.new
)
)
model.add(
Neuratron::Layers::Dense.new(10,
initializer: Neuratron::Initializers::Random.new(range: (-1.0..1.0)),
activation: Neuratron::Activations::Tanh.new
)
)
We use a Tanh
activation, so the random initializer range should be (-1.0..1.0)
.
We have to compile our model to build all weight and biases for our model.
model.compile(
loss: Neuratron::Losses::MAE.new,
optimizer: Neuratron::Optimizers::SGD.new(momentum: 0.80),
metrics: [Neuratron::Metrics::CategoricalAccuracy.new] of Neuratron::Metric
)
We use the sgd
optimizer.
All set, let's train our model!
model.fit(
images, # Array(LA::GMat(1, 764))
labels, # Array(LA::GMat(1, 10))
epochs: 10,
batch_size: 2048,
)
After that, our model is ready to predict some numbers
model.predict(images[0])
# => LA::GMat(1, 10)
Development
If you have any knowledge of machine learning, don't hesitate to propose a new feature via issues, or contribute to current issues.
Contributing
- Fork it (https://github.com/alex-lairan/neuratron/fork)
- Create your feature branch (
git checkout -b branch_name
) - Commit your changes (
git commit -am 'Add some feature'
) - Push to the branch (
git push origin branch_name
) - Create a new Pull Request
Contributors
- Alexandre Lairan - creator and maintainer
neuratron
- 4
- 0
- 0
- 0
- 1
- over 4 years ago
- February 27, 2020
MIT License
Thu, 21 Nov 2024 17:25:28 GMT